

2026

The Equal Chance to Win

OFFSHORE RACING CONGRESS

2023 ORC Europeans | Janis Spurdzins

ORC Rating Systems

ORC International & ORC Club

Copyright © 2026 Offshore Racing Congress.

All rights reserved. Reproduction in whole or in part only
with the permission of the Offshore Racing Congress.

Margin bars denote rule changes from 2025 version.

The Equal Chance to Win

ORC RATING SYSTEMS

*ORC International
Club*

2026

ORC International and ORC Club are World Sailing recognized International Rating Systems

Offshore Racing Congress

www.orc.org

CONTENTS

Introduction 3

1. LIMITS AND DEFAULTS

100	General	5
101	Materials	6
102	Crew Weight	6
103	Hull	6
104	Appendages	7
105	Propeller	7
106	Stability	7
107	Righting Moment	8
108	Rig	9
109	Mainsail	10
110	Mizzen	10
111	Headsail	10
112	Mizzen Staysail	11
113	Symmetric Spinnaker	11
114	Asymmetric Spinnaker	12
115	No Spinnaker Configuration	12
116	Quadrilateral Sails and Sails set on the wishbone boom	12

2. RULES APPLYING WHILE RACING

200	Crew weight	13
201	Ballast, Fixtures and Equipment	13
202	Drop Keels and Movable Appendages	13
203	Centerboard	13
204	Manual Power	13
205	Rig	13
206	Sails	14
207	Mainsail and Mizzen	14
208	Headsails	14
209	Spinnakers	15
210	Mizzen Staysail	15
211	Penalties	15

3. CERTIFICATES

301	Certificates	16
302	One Design Certificates	16
303	Certificate Issuing	17
304	Owner's Responsibility	17
305	Measurement Protests	18

4. SCORING

401	General	20
402	Polar Curve Scoring	20
403	Single Number Scoring Options	22

ORC International Certificate Sample 24

ORC Club Certificate Sample 28

Index of Symbols 30

Introduction

ORC Rating systems (ORC International and ORC Club) use the International Measurement System (IMS) as a measurement platform and the ORC Velocity Prediction Program (VPP) to rate boats of different characteristics in size, hull and appendages shape and configuration, stability, rig and sails measurement, propeller installation and many other details affecting their theoretical speed.

Boat ratings are matrix of time allowances calculated from the predicted boat speeds for 9 different true wind speeds (4, 6, 8, 10, 12, 14, 16, 20 and 24 knots) and 8 true wind angles (52° , 60° , 75° , 90° , 110° , 120° , 135° , 150°), and two optimum angles on sailing upwind and downwind for which VMG (Velocity Made Good) is maximized.

From this matrix of predicted performances, various scoring options are derived from the rating matrix adapting the scoring to the course conditions.

The VPP is explained in detail in the VPP Documentation guide and is the basis of the ORC rating systems. A VPP simulation software package can be purchased to study the theoretical boat speeds derived from the calculations when using IMS measurements. Details and order forms are available at the ORC website: www.orc.org.

Users of ORC Rating systems should consult the Administrative part of the IMS (Part A) for appropriate use of abbreviations, definitions, and symbols.

ORC International certificates may be issued for boats which are completely measured in accordance with the IMS and complying with the requirements of the IMS Rules and Regulations, as well as those expressed in this document.

In contrast, ORC Club certificates may be issued with less than complete IMS measurement where measurement data may be declared and/or obtained from other sources. The Organizing Authority of any race or regatta will specify whether ORC International or ORC Club certificates are required for entry, but both certificate types can be mixed in any race, being fully compatible.

The following measurements with appropriate IMS rules are used for the ORC Rating systems:

Hull and appendages in the symmetry plane

	OFF file	B3
FFM	Freeboard Forward Measured	B5.3
FAM	Freeboard Aft Measured	B5.4
SG	Water Specific Gravity	B5.5
	Other Hull Measurements	B7

Appendages not included in the OFF File

	Appendage definition	C1
--	----------------------	----

Propeller

	Propeller Type	D2
	Propeller Installation	D3
	Propeller Measurements	D4

Stability

PLM	Length of Manometer	E2.3
GSA	Gauge Surface Area	E2.4
RSA	Reservoir Surface Area	E2.5
WD	Weight Distance	E2.7
W1-4	Inclining Weights	E2.8
PDI-4	Pendulum Deflections	E2.9
WBV	Water Ballast Volume	B4.4
LIST	Average List Angle	E3.2
CANT	Average Canting Angle	E3.3

Rig

P	Mainsail Hoist	F2.1
IG	Forestay Height	F3.1
ISP	Height of Spinnaker Hoist	F3.2
BAS	Boom Above Sheerline	F3.4
MDT1	Max. Transverse Mast	F4.1
MDL1	Max. Fore-and-Aft Mast	F4.2
MDT2	Min. Transverse Mast	F4.3
MDL2	Min. Fore-and-Aft Mast	F4.4
TL	Taper Length	F4.5
MW	Mast Width	F4.6
GO	Forestay Outrigger	F4.7
E	Mainsail Foot	F5.1
BD	Boom Diameter	F5.2
J	Foretriangle Base	F6.1
SFJ	Stem to Forward End of J	F6.2
FSD	Forestay Diameter	F6.5
SPL	Spinnaker Pole Length	F7.1
TPS	Tacking Point of Spinnaker	F7.2
MWT	Mast Weight	F8.1
MCG	Mast Vertical Center of Gravity	F8.3
	Other Rig Measurements	F9

Mizzen Rig

PY	Mainsail Hoist Mizzen	F10.1
BASY	Boom Above Sheerline Mizzen	F10.1
MDT1Y	Max. Transverse Mast Mizzen	F10.1
MDL1Y	Max. Fore-and-Aft Mast Mizzen	F10.1
MDT2Y	Min. Transverse Mast Mizzen	F10.1
MDL2Y	Min. Fore-and-Aft Mast Mizzen	F10.1
TLY	Taper Length Mizzen	F10.1
EY	Mainsail Foot Mizzen	F10.1
BDY	Boom Diameter Mizzen	F10.1
IY	Height of Mizzen Staysail Hoist	F10.2
EB	Distance Between Masts	F10.3

Sails

MHB	Mainsail Top Width	G2
MUW	Mainsail Upper Width	G2
MTW	Mainsail 3/4 Width	G2
MHW	Mainsail 1/2 Width	G2
MQW	Mainsail 1/4 Width	G2
MHBY	Mizzen Top Width	G3
MUWY	Mizzen Upper Width	G3
MTWY	Mizzen 3/4 Width	G3
MHWY	Mizzen 1/2 Width	G3
MQWY	Mizzen 1/4 Width	G3
HHB	Headsail Top Width	G4.1
HUW	Headsail Upper Width	G4.1
HTW	Headsail 3/4 Width	G4.1
HHW	Headsail 1/2 Width	G4.1
HQW	Headsail 1/4 Width	G4.1
HLU	Headsail Luff	G4.1
HLP	Headsail Perpendicular	G4.1
SHW	Symm. Spinnaker Mid Width	G6.4
SFL	Symm. Spinnaker Foot	G6.4
SLU	Symm. Spinnaker Luff	G6.4
SLE	Symm. Spinnaker Leech	G6.4
SHW	Asymm. Spinnaker Mid Width	G6.5
SFL	Asymm. Spinnaker Foot	G6.5
SLU	Asymm. Spinnaker Luff	G6.5
SLE	Asymm. Spinnaker Leech	G6.5
QLE	Quadrilateral Sail Leech Length	G7.2
QLH	Quadrilateral Sail Head Length	G7.2
QFL	Quadrilateral Sail Foot Length	G7.2
QCD	Quadrilateral Clew Diagonal	G7.2
QLM	Quadrilateral Leech Median	G7.2

1. LIMITS AND DEFAULTS

100 General

100.1 The IMS Measurement dataset of any boat is processed by the Lines Processing Program (LPP) which calculates hydrostatics and all hull characteristics required by the VPP. The calculations of the main hydrostatic data are explained in principle below, while the exact formulations are defined in the VPP and its documentation.

100.2 Default water specific gravity **SG** shall be 1.0253. FA and FF shall be adjusted from the measured freeboards **FAM** and **FFM** depending on the difference between **SG** at the time of measurement and the default value defined above. All hydrostatic calculations are then made using the flotation plane in nominal seawater, i.e. with default specific gravity. FA and FF also include freeboards adjustments for the boats measured in measurement trim before 31.12.2012. Freeboards are adjusted based on deduction of total weight and longitudinal position of items recorded in the measurement inventory at the time of measurement and not included in IMS B4.1.

100.3 Sailing Trim shall be the plane of flotation derived from Measurement Trim as in 100.2 with the addition of weight to represent crew, sails and gear.

100.4 Height of Base of I (MHBI) is the calculated freeboard in Sailing Trim at the base of IG and ISP. It is used to establish the height of the center of effort of the sailplan.

100.5 DSPM and DSPL are the displacements calculated from the volume resulting from the linear integration of the immersed section areas obtained from the hull lines of the Offsets and the freeboards afloat, adjusted to the standard **SG**, in Measurement Trim and Sailing Trim respectively. DSPM is printed on the ORC certificate.

100.6 The Sailing Length (IMS L) is an effective sailing length which takes into account the hull shape along its length and especially at the ends of the yacht, both above and below the plane of flotation in Sailing Trim. L is a weighted average of lengths for three conditions of flotation: two with the yacht upright and one with the yacht heeled. The lengths for the three conditions of flotation from which L is calculated are second moment lengths derived from immersed sectional areas attenuated for depth and adjusted for appendages. The second moment lengths are:

LSM0 is for the yacht in Measurement Trim floating upright.
LSM1 is for the yacht in Sailing Trim floating upright.
LSM2 is for the yacht in Sailing Trim floating with 2 degrees heel.
LSM3 is for the yacht in Sailing Trim floating with 25 degrees heel.
LSM4 is for the yacht in a sunk condition such that compared to Sailing Trim it is sunk $0.025 \cdot LSM1$ forward and $0.0375 \cdot LSM1$ aft, floating upright.

The LPP calculates LSM's taken from the canoe body without appendages and from the full hull with appendages. The final LSM's are the averages of full hull and canoe body LSM's. IMS L is a fundamental parameter taken into account by the VPP in determining hull resistance and it is calculated as:

$$L = 0.3194 \cdot (LSM1 + LSM2 + LSM4)$$

100.7 The effective beam B is a mathematical expression of beam in which elements of beam throughout the immersed portion of the hull are taken into account with emphasis on beam elements close to the plane of flotation and remote from the ends of the hull. It is derived from the transverse second moment of the immersed volume attenuated with depth for the yacht in Sailing Trim floating upright.

100.8 The effective hull depth T is a depth-related quantity for the largest immersed section of the hull. It is derived from the area of the largest immersed section attenuated with depth for the yacht in Sailing Trim floating upright divided by B.

100.9 The Beam Depth Ratio BTR is the effective beam divided by the effective hull depth BTR = B/T.

100.10 The Maximum Draft of the Hull including fixed keel shall be the vertical distance from the Sailing Trim plane of flotation to the lowest point of fixed keel. For a centerboard, when **KCDA** is measured and recorded, the maximum draft shall be decreased by **KCDA**.

100.11 VCGD is the vertical center of gravity distance from the datum line in the hull offset file, while VCGM is the vertical center of gravity from the measurement trim waterline.

101 Materials

101.1 It is the intention of the ORC Rating Systems to promote safety, address cost and allow materials that are readily available while prohibiting materials and processes that are not readily available.

101.2 The following materials and processes are prohibited for modifications on existing boats or on boats with Age Date of 2018 or newer:

- In hull and deck shell structures: Carbon fiber with modulus exceeding 320 GPa.
- In spars with the exception of booms, bowsprit and spinnaker poles: Cored sandwich construction where the core thickness at any section exceeds the thickness of the two skins.
- Material with density greater than 11340 kg/m³.
- Pressure applied in the manufacture of hull and deck shell structures greater than 1 atmosphere.
- Temperature applied in the manufacture of hull and deck shell structures greater than 90°C.
- Aluminium honeycomb cores in hull shell and deck shell structures, except on the boats with **hydrofoils** and LOA > 18.0 m
- In hull shell and deck shell structures: Plastic foam core of nominal density less than 60 kg/m³.

For the purposes of this rule, *hull and deck shell* are considered as the envelope surfaces of the hull and deck that impart shape, excluding attached structural frames, floors, bulkheads, girders and stringers, and localized reinforcements such as chain plate attachments

102 Crew Weight

102.1 The maximum crew weight may be declared by the owner.

102.2 If the maximum crew weight is not declared it shall be taken as default calculated to the nearest kilogram as follows:

$$CW = 25.8 \cdot LSM 0^{1.4262}$$

102.3 Minimum crew weight may be applied by the Notice of Race and Sailing Instructions and shall be calculated as follows:

$$Minimum\ CW = Maximum\ CW - (the\ greater\ of: 15\% \ of\ Maximum\ CW\ or\ 130\ kg)$$

102.4 The possibility of extending crew position beyond the IMS sheerline is taken into account through CEXT factor in accordance with ORC Sportboat Class Rules.

103 Hull

103.1 Age Allowance (AA) is the rating assessment calculated as a decrease of the rated boat's speeds by 0.0325% for each year from the Age or Series Date, whichever is earlier, to the current rule year up to a maximum of 20 years (0.65%).

103.2 Dynamic Allowance (DA) is the rating assessment representing the dynamic behaviour of a boat taking into account performance in unsteady states (i.e. while tacking) calculated on the basis of: Upwind Sail Area/Volume ratio, Upwind Sail Area/Wetted Surface ratio, Downwind Sail Area/Volume ratio, Downwind Sail Area/Wetted Surface ratio and Length/Volume ratio.

DA is applied to the ratings of all Cruiser/Racers, as well as any Performance boats with a Series Date older than 30 years.

103.3 RS is the rating assessment for different rig and sails controls with or without use of the non-manual power (NMP). It is applied as a percentage to all time allowances for all wind speeds and directions

and cannot be more than 1.5%. The RS value increases rated boat speeds and is calculated from the effect of each of rig and sails controls in percentages follows:

<u>Rig</u>		<u>Sails</u>	
Inner stay	0.017	Vang NMP	0.032
Inner stay adjustable	0.034	Outhaul NMP	0.016
Inner stay adjustable NMP	0.051	Halyards NMP	0.032
Forestay adjustable turnbuckle	0.034	Mainsail cunningham NMP	0.016
Forestay adjustable	0.034	Headsail cunningham NMP	0.032
Forestay adjustable NMP	0.136	Mainsail traveller NMP	0.065
Backstay adjustable	0.085	Sheets NMP	0.065
Backstay adjustable NMP	0.136	Tack line NMP	0.032
Running backstay adjustable	0.085	Headsail track NMP	0.032
Running backstay adjustable NMP	0.136	Spinnaker retriever	0.032
Checkstays adjustable NMP	0.068		
Base of the mast adjustable	0.034		

104 Appendages

- 104.1 The longitudinal movement of the center of gravity of a centerboard when it is being raised or lowered shall not exceed $0.06 \cdot LOA$.
- 104.2 Hull interceptors mounted on the transom to redirect the water flow to change the attitude of transom shall not be movable.

105 Propeller

- 105.1 PIPA shall be the propeller installation projected area calculated on propeller type, installation and measurements.
- 105.2 For twin propeller installation, PIPA is doubled.

106 Stability

- 106.1 ORC Stability Index shall be calculated as follows:

$$\text{Stability Index} = \text{LPS} + \text{Capsize Increment (CI)} + \text{Size Increment (SI)}$$

$$CI = 18.75 \cdot \left(2 - \frac{MB}{\sqrt[3]{DSPM/64}} \right) \quad SI = \frac{\left(\frac{12 \cdot \sqrt[3]{DSPM/64 + LSM0}}{3} \right) - 30}{3}$$

DSPM – Displacement in measurement trim calculated by the VPP

LSM0 – Second moment length calculated by the VPP

CI shall not be taken as greater than 5.0.

SI shall not be taken as greater than 10.0.

- 106.2 For a boat with water ballast or canting keel, the Ballast Leeward Recovery Index (BLRI) represents such a boat's relative ability to recover from a knock down with sails aback, i.e., knocked down with all water ballast or canting keel to leeward. BLRI shall be calculated as follows:

$$BLRI = 0.875 + 0.083 \cdot BALL_{FR} \quad \text{for } BALL_{FR} \geq 1.5$$

$$BLRI = 0.5 + 0.333 \cdot BALL_{FR} \quad \text{for } BALL_{FR} < 1.5$$

$$BLRI = 0.5 \quad \text{if LPS} < 90^\circ$$

where

$$BALL_{FR} = \frac{RA90lee \cdot DSPL_{min}}{2 \cdot SA \cdot CEH}$$

and the following values taken with full leeward cant or leeward ballast tankage full, windward empty, calculated by the VPP, in metric units:

RA90lee - Righting arm, 90 degrees heel in $DSPL_{min}$ (ballast on leeward)

$DSPL_{min}$ - Minimum Displacement calculated as $DSPM + \text{mainsail weight} + \text{jib weight} + \text{minimum crew} + \text{gear weight}$. Minimum crew is taken as 75 kg ($LOA \leq 8.00$), 150 kg ($8.00 < LOA \geq 16.00$) or 225 kg ($16.00 < LOA$)

SA - Sail area calculated as rated mainsail + mast area $(P + BAS - TL) * MDL1 + TL * (MDL1 + MDL2)/2 + \text{fore triangle } (IG * J * 0.5) + \text{rated mizzen}$

CE - Geometric center of effort of such defined sail area

107 Righting Moment

107.1 When an inclining test is performed with weights that are transferred once from starboard to port side and the angle recorded four times in succession, the measured righting moment shall be calculated as follows:

$$RM_{(1-4)} = W_{(1-4)} \cdot 0.0175 \cdot WD \cdot \frac{PL}{PD_{(1-4)}} \quad RM_{measured} = \frac{RM_1 + RM_2 + RM_3 + RM_4}{4}$$

107.2 When an inclining test is performed with four weights that are transferred one by one from starboard to port side, the measured righting moment shall be calculated as follows:

$$RM_{measured} = WD \cdot PL \cdot \frac{0.0175}{SLOPE}$$

where:

$$PL = PLM / (1 + GSA / RSA)$$

$$SLOPE = \frac{4 \cdot SUMXY - SUMY \cdot SUMX}{4 \cdot SUMXSQ - SUMX^2}$$

SUMX - the sum of the inclining weights $W1 + W2 + W3 + W4$

SUMY - the sum of the pendulum deflections $PD1 + PD2 + PD3 + PD4$, referenced to datum point.

SUMXSQ - the sum of the squares of the inclining weights $W1^2 + W2^2 + W3^2 + W4^2$

SUMXY - the sum of the products of the inclining weights multiplied with their corresponding pendulum deflections $PD1 \cdot W1 + PD2 \cdot W2 + PD3 \cdot W3 + PD4 \cdot W4$

The slope of a least squares fit straight line through the inclining weight vs. pendulum deflection is determined iteratively, plotting in turn each of the five possible combinations of four selected data points, as referenced to the fifth point. Of the five alternative plots, the one yielding the fit with the highest correlation coefficient determines RM.

107.3 For boats with movable boards or drop keels, the righting moment is corrected to: $RMC = RM + 0.0175 \cdot (WCBA \cdot CBDA + WCBB \cdot CBDB)$. For yachts with fixed keels or centerboards locked to prevent any movement: $RMC = RM$.

107.4 If the righting moment is not measured or obtained from another source, the estimated righting moment shall be taken as:

$$RM_{estimated} = 1.025 \cdot \left(a0 + a1 \cdot BTR + a2 \cdot \frac{\sqrt[3]{DSPS}}{IMSL} + a3 \cdot \frac{SA \cdot HA}{B^3} + a4 \cdot \frac{B}{\sqrt[3]{DSPS}} \right) \cdot DSPS \cdot IMSL$$

a0 = -0.00410481856369339 (regression coefficient)

a1 = -0.0000399900056441 (regression coefficient)

a2 = -0.0001700878169134 (regression coefficient)

a3 = 0.00001918314177143 (regression coefficient)

a4 = 0.00360273975568493 (regression coefficient)

DSPS - displacement in sailing trim calculated with default crew weight
 SA - sail area upwind
 HA - heeling arm, defined as $(CEH_{main} \cdot AREA_{main} + CEH_{headsail} \cdot AREA_{headsail}) / SA + MHBI + DHKA \cdot 0.45$, for mizzen $(CEH_{headsail} \cdot AREA_{headsail} + CEH_{mizzen} \cdot AREA_{mizzen})$ is added to the numerator
 CEH - height of center of effort
 DHKA - Draft of keel and hull adjusted.

and shall not be taken less than one giving the Limit of positive stability (LPS) of 103.0 degrees or 90.0 degrees for an ORC Sportboat.

107.5 The possibility of extending the crew's position outside the sheerline shall be recorded through the Crew Arm Extension factor (CEXT) as follows:

$$CEXT = \frac{(0.5+yr) \cdot (CW - No.Trapezes \cdot 85) + (1.2+yr) \cdot (No.Trapezes \cdot 85)}{CW}$$

Where:

CW - Crew weight recorded as declared or default according with the ORC rule 102 that shall not be taken less than 170 kg.
 No.Trapezes - Number of used trapeze devices.
 yr - Transverse extension of racks or other structures outside the sheerline that are not included in the offset file.

For boats complying with the OSR requirements for the lifelines, CEXT shall be recorded as follows:

a) Double lifelines: $CEXT = 0$
 b) Single lifeline: $CEXT = -0.2$

For boats that do not comply with OSR 3.14 and have no trapezes, CEXT shall be recorded as 0.25.

108 Rig

108.1 The upper end of any rigging shall be attached to the mast above a point $0.225 \cdot \mathbf{IG}$ above the sheerline, except that there may be a temporary support to the mast near the spinnaker pole when the spinnaker is set.

108.2 $\mathbf{P} + \mathbf{BAS}$ shall not be less than the greater of $0.96 \cdot \mathbf{IG}$ or $0.96 \cdot \mathbf{ISP}$.

108.3 Boom diameter by default shall be $0.06 \cdot \mathbf{E}$. If \mathbf{BD} exceeds this default, the mainsail rated area shall be increased as defined in 109.2.

108.4 Foretriangle height IM shall be calculated as follows:

$$IM = \left(\mathbf{IG} + \frac{\mathbf{IG} \cdot (GO - MW)}{J - GO + MW} \right)$$

IM shall not be taken less than $0.65 \cdot (\mathbf{P} + \mathbf{BAS})$.

108.5 If \mathbf{TPS} is measured and bowsprit is recorded as moveable sideways in accordance with IMS F7.3 it shall be considered by the VPP as a spinnaker pole with $\mathbf{SPL} = \mathbf{TPS}$.

108.6 Maximum fore and aft mast cross section shall be defined as

$$MDL1_{max} = 0.036 \cdot \left(\frac{\mathbf{IG} \cdot RM25}{25} \right)^{0.25}$$

If $MDL1$ exceeds this maximum, the mainsail rated area shall be increased as defined in 109.3.

108.7 Rated SPL shall not be taken less than \mathbf{J} .

108.8 Rated TPS shall not be taken less than \mathbf{J} .

109 Mainsail

109.1 Mainsail measured area shall be calculated as follows:

$$Area = \frac{P}{8} \cdot (E + 2 \cdot MQW + 2 \cdot MHW + 1.5 \cdot MTW + MUW + 0.5 \cdot MHB)$$

If any of mainsail widths are not measured, they shall be taken as:

$$MHB = 0.05 \cdot E$$

$$MUW = 0.25 \cdot E$$

$$MTW = 0.41 \cdot E$$

$$MHW = 0.66 \cdot E$$

$$MQW = 0.85 \cdot E$$

Mainsail measured area is calculated by the simplified trapeze formula above, dividing the luff in amounts of 1/4, 1/2, 3/4 and 7/8. Mainsail rated area is calculated by using the actual heights on the luff from the tack point to the points where mainsail widths are measured. These actual heights are calculated as follows:

$$MHWH = \frac{P}{2} + \frac{MHW - E/2}{P} \cdot E$$

$$MQWH = \frac{MHWH}{2} + \frac{MQW - (E + MHW)/2}{MHWH} \cdot (E - MHW)$$

$$MTWH = \frac{MHWH + P}{2} + \frac{MTW - MHW/2}{P - MHWH} \cdot MHW$$

$$MUWH = \frac{MTWH + P}{2} + \frac{MUW - MTW/2}{P - MTWH} \cdot MTW$$

Mainsail rated area is then calculated as follows:

$$Area = \frac{MQW + E}{2} \cdot MQWH + \frac{MQW + MHW}{2} \cdot (MHWH - MQWH) + \frac{MHW + MTW}{2} \cdot (MTWH - MHWH) + \frac{MUW + MTW}{2} \cdot (MUWH - MTWH) + \frac{MUW + MHB}{2} \cdot (P - MUWH)$$

Thereby, the amount of roach will proportionally increase the rated area from the measured one. Mainsail rated area shall be the largest rated area of any mainsail in the sails inventory.

109.2 If **BD** exceeds the limit determined in 108.3, the mainsail rated area shall be increased by $2 \cdot E \cdot (BD - 0.06 \cdot E)$.

109.3 If **MDL1** exceeds the limit determined in 108.6, the mainsail rated area shall be increased by $P \cdot (MDL1 - MDL1_{max})$.

109.4 If the boat has a rotating mast, the mainsail rated area is increased by:

$$(\max(P + BAS, IM, ISP) - TL) \cdot MDL1 + \frac{MDL1 + MDL2}{2} \cdot TL$$

110 Mizzen

Mizzen width defaults and rated area shall be calculated as for the mainsail with corresponding measurements.

111 Headsail

111.1 Headsail measured area shall be calculated as follows:

$$Area = 0.1125 \cdot HLU \cdot (1.44444 \cdot HLP + 2 \cdot HQW + 2 \cdot HHW + 1.5 \cdot HTW + HUW + 0.5 \cdot HHB)$$

111.2 For headsails without a leech roach, if any of its widths are not measured, it shall be taken as follows:

$$H\!H\!B = 0.020 \cdot H\!L\!P$$

$$H\!U\!W = 0.125 \cdot H\!L\!P + 0.875 \cdot H\!H\!B$$

$$H\!T\!W = 0.250 \cdot H\!L\!P + 0.750 \cdot H\!H\!B$$

$$H\!H\!W = 0.500 \cdot H\!L\!P + 0.500 \cdot H\!H\!B$$

$$H\!Q\!W = 0.750 \cdot H\!L\!P + 0.250 \cdot H\!H\!B$$

Headsails with a leech roach shall be completely measured.

111.3 Headsail rated area shall be the largest measured area for each of headsail set on the forestay and headsail **set flying** in the sails inventory, but shall not be taken less than:

$$0.405 \cdot J \cdot \sqrt{I\!M^2 + J^2} \quad \text{for headsails set on the forestay}$$

$$\frac{I\!S\!P_n}{6} \cdot \left(4 \cdot T\!P\!S_n \cdot \frac{H\!H\!W}{H\!L\!P} + T\!P\!S_n \right) \quad \text{for headsails set flying.}$$

Any headsail tacked between the forestay and the mast shall be considered by the VPP as a headsail set on the forestay.

111.4 Aerodynamic lift coefficients of the VPP calculation will be selected for different conditions as follows:

a) Headsail set on the forestay

b) Headsail **set flying**

c) For asymmetric spinnakers with **SHW/SFL** in range of 0.75 – 0.85 aerodynamic forces are calculated with both coefficients for the spinnaker and for the headsail set flying with one giving faster boat speed taken as final.

If any of the headsails set flying in the sails inventory have battens, the lift coefficients are multiplied with an appropriate factor.

Additionally, aerodynamic lift coefficients are credited in the upwind angles (AWA < 50) for each of the following:

d) If there is a headsail furler on a fixed forestay used in association with only one headsail in accordance with IMS F9.10

e) If all headsails and the mainsail are made of woven polyester

Appropriate aerodynamic lift coefficients are used when the headsail is used with the whisker pole set on leeward as recorded in IMS F7.4.

112 Mizzen Staysail

Mizzen staysail rated area shall be calculated as follows:

$$Area = Y\!S\!H\!F \cdot (0.5 \cdot Y\!S\!H\!W + 0.25 \cdot Y\!S\!F\!L)$$

113 Symmetric Spinnaker

113.1 Symmetric spinnaker measured area shall be calculated as follows:

$$Area = \frac{S\!L\!U \cdot (S\!F\!L + 4 \cdot S\!H\!W)}{6}$$

Symmetric spinnaker rated area shall be the largest measured area of any symmetric spinnaker in the sails inventory, but it shall not be taken less than:

$$1.14 \cdot \sqrt{I\!S\!P^2 + J^2} \cdot \max(S\!P\!L; J)$$

113.2 If any of SLU, SLE, SHW or SFL is not measured, it shall be taken as follows:

$$SLU = SLE = 0.95 \cdot \sqrt{ISP^2 + J^2}$$

$$SFL = 1.8 \cdot \max(SPL; J)$$

$$SHW = 1.8 \cdot \max(SPL; J)$$

114 Asymmetric Spinnaker

114.1 The asymmetric spinnaker luff shall be calculated as

$$ASL = \frac{SLU + SLE}{2}$$

114.2 Measured area for Asymmetric spinnaker shall be calculated as follows:

$$Area = \frac{ASL \cdot (SFL + 4 \cdot SHW)}{6}$$

The asymmetric spinnaker rated area shall be the largest measured area of any asymmetric spinnaker in the sails inventory, but it shall not be taken less than:

$$\frac{ISP}{6} \cdot \left(4 \cdot TPS \cdot \frac{SHW}{SFL} + TPS \right) \quad \text{when } SHW/SFL < 0.85$$

$$0.6333 \cdot \sqrt{ISP^2 + J^2} \cdot \max(1.8 \cdot SPL; 1.8 \cdot J; 1.6 \cdot TPS) \quad \text{when } SHW/SFL \geq 0.85$$

114.3 If either of SLU, SLE, SHW or SFL are not measured, each shall be taken as follows:

$$ASL = 0.95 \cdot \sqrt{ISP^2 + J^2}$$

$$SFL = \max(1.8 \cdot SPL; 1.8 \cdot J; 1.6 \cdot TPS)$$

$$SHW = \max(1.8 \cdot SPL; 1.8 \cdot J; 1.6 \cdot TPS)$$

114.4 If the asymmetric spinnaker is declared to be tacked at the **TPS** measurement only as in 209.3(b), the VPP calculations will be taken accordingly.

115 No Spinnaker Configuration

If there is no spinnaker measured, the boat will be rated with an asymmetric spinnaker of

$$Area = 1.064 \cdot Area \text{ the largest headsail set on the forestay}$$

116 Quadrilateral sails and sails set on the wishbone boom

Measured and rated areas of quadrilateral sails and sails set on the wishbone boom shall be calculated as:

$$\begin{aligned} Area = & \frac{1}{4} \cdot \sqrt{4 \cdot P^2 \cdot QFL^2 - (P^2 + QFL^2 - QCD^2)^2} + \\ & + \frac{1}{4} \cdot \sqrt{QLM^2 \cdot QLE^2 - \left(QLM^2 + \frac{QLE^2}{4} - QCD^2 \right)^2} + \\ & + \frac{1}{4} \cdot \sqrt{QLM^2 \cdot QLE^2 - \left(QLM^2 + \frac{QLE^2}{4} - QHL^2 \right)^2} \end{aligned}$$

P in this formula may be P or PY depending if the sail is set on the main or on the mizzen mast.

2. RULES APPLYING WHILE RACING

200 Crew Weight and Position

200.1 The weight of all crew members on board while racing weighed in light street clothes shall not be:

- greater than the maximum crew weight as defined in 102.1 and 102.2
- smaller than the minimum crew weight as defined in 102.3, when applied by the Notice of Race and Sailing Instructions.

200.2 RRS 49.2 is modified by deleting “sitting” in the second sentence.

201 Ballast, Fixtures and Equipment

201.1 The second sentence of the RRS 51 does not apply for the water ballast and/or canting keel systems. Water ballast shall be moved only transversely.

201.2 Unwarranted quantities of stores shall be considered as ballast. Any liquid carried on board in excess of 2.5 liters of drinkable fluid per person per day of racing, in the tanks or in other containers exclusive of emergence water required by the Offshore Special Regulations, and any fuel in excess of the quantity needed to motor for 12 hours is not permitted. Race Organizers may waive this requirement by specifying so in the Notice of Race.

201.3 Portable equipment, gear, sails and stores may only be moved from stowage for use in their primary purpose. Stowage in this respect is the position for any item of equipment or stores, to be maintained for the duration of a race or series, when such item is not in use for its primary purpose. Note: Moving sails or equipment with the intention of improving performance is prohibited and shall be considered as a breach of RRS 51, although this may be changed by the Notice of Race.

202 Drop Keels and Movable Appendages

If any drop keel or movable appendage is to be locked when *racing* it shall be locked so and the locking device shall be in place.

203 Centerboards

The movement of a centerboard or drop keel while *racing* shall be restricted to one of the following:

- straight extension or retraction as in a dagger board.
- extension about a single fixed pivot.

204 Manual Power

RRS 52 is modified. Non-manual power may be used for:

- canting keel, water ballast and any **hydrofoil**.
- adjusting rigs and sails with any of items recorded as “NMP” as defined in IMS Rules F9 and G9. |
- use of an auto pilot when prescribed by the Notice of Race and/or Sailing Instructions.
- remotely operated hydraulic valves, shift mechanisms, switches, and other devices with a similar purpose to facilitate the operation of otherwise manually powered systems.

205 Rig

205.1 Where the mast is keel-stepped the extent of natural movement at the deck shall not exceed 10% of the mast length fore and aft, nor 10% of the mast width athwartships.

205.2 If there is a retractable bowsprit, it shall be fully retracted at all times except when the boat is in the process of a continuous hoist, flying or dropping of the spinnaker or the headsail set flying. The bowsprit shall be retracted at the first reasonable opportunity after the retrieval or dropping of the spinnaker or the headsail set flying.

206 Sails

206.1 A boat shall not carry aboard while *racing* more sails of each type than the numbers defined as follows:

CDL	Above 13.550	13.550 – 11.271	11.270 – 9.631	Below 9.631
Mainsail	2	2	2	2
Headsails*	8	7	6	5
Spinnakers	6	5	5	4
Mizzen Staysail	1	1	1	1
Mizzen	1	1	1	1

* *Headsails includes headsails set on the forestay and headsails set flying except as defined in b) below* with the following exceptions:

- a) One of each: trysail, storm jib, heavy weather jib as defined by the Offshore Special Regulations and of area smaller than the relevant storm sail areas shown on the certificate. These shall not be counted in the numbers above.
- b) If there is a headsail used with a headsail furler as recorded in accordance with IMS F9.8 and credited in accordance with 111.4(d) only one headsail set on the forestay shall be aboard while racing. That headsail shall be of area not less than 95% of the largest headsail set on the forestay recorded in the certificate.
- c) Only one mainsail shall be used while racing.

206.2 The Notice of Race and Sailing Instructions may modify limitations set in 206.1 appropriate to the character of the race.

206.3 Operating devices for securing halyards under tension (e.g. halyard locks) shall be permitted only if they can be remotely operated from the deck.

206.4 Sails shall be set as defined in ERS B1 and rules 207 – 210 bellow.

207 Mainsail and Mizzen

When set on the mast the **head point** shall be the highest point of the **luff**. Mainsail and mizzen luff shall be reefed only from its bottom part or with a furling system in the mast.

208 Headsails

208.1 Headsails may be set on the forestay or **set flying**.

208.2 Headsails set flying may be tacked:

- a) in front of the forestay, where
 - i) it shall be tacked approximately on the boat's centerline, except when it is tacked on a bowsprit that is recorded as movable sideways in accordance with IMS F7.3.
 - ii) it shall be set within **ISP** and **TPS** as recorded according to the IMS rule G4.1(a)
- b) between the forestay (included) and the mast, where
 - i) it shall have $HLP \leq 1.1*J$
 - ii) it shall be tacked inside a spinnaker, whenever one is set
 - iii) it may be tacked out of the boat's centerline

208.3 Two headsails may be set on the same tack point, but only if no spinnaker is in use.

208.4 Headsails may be sheeted:

- a) to any part of the deck or rail
- b) to a fixed point no higher than $0.05 * MB$ above the deck or coach roof
- c) to the main boom
- d) to the spinnaker pole or the **whisker pole** in accordance with RRS 55.3(a).

Headsails shall not be sheeted to any other spar or **outrigger**.

208.5 Headsails shall be sheeted from only one point of the **sail** at a given time.

209 Spinnakers

209.1 Spinnakers shall be **set flying**. If there is a luff wire, it shall be completely attached to the **luff**, with no voids between the sail and the luff wire.

209.2 Leech lines shall not be adjustable while *racing* on symmetric spinnakers.

209.3 Spinnakers may be tacked:

- a) when **TPS** is recorded in the certificate: approximately on a boat's centerline, except when they are tacked on a bowsprit that is recorded as movable sideways in accordance with IMS F7.3
- b) when **SPL** is recorded in the certificate: on the spinnaker pole, except when declared that an asymmetric spinnaker will be tacked at the **TPS** measurement point only.

209.4 Where the asymmetric spinnaker is tacked on the centerline, tack pennants of whatever length may be used. Spinnakers shall be sheeted on the same side as the boom, except when gybing or manoeuvring. Regardless, the tack of the spinnaker shall not be moved on the windward side with the help of afterguys and/or outriggers.

209.5 Spinnakers shall be sheeted from only one point to any part of the rail or deck or to the main boom.

209.6 Struts, spools or similar devices used solely for the purpose of keeping the spinnaker guy away from the windward shrouds are permitted only when the guy is attached to the pole and shall not to be used for any other purpose.

210 Mizzen Staysail

210.1 Mizzen staysail shall be sheeted:

- a) to any part of the rail or deck
- b) to the mizzen boom within the measurement limit according to the IMS F10.1

and shall not be sheeted to any other spar or outrigger.

210.2 The tack or tack pennant shall be secured abaft the point of intersection of the aft side of the mainmast with the main deck and must also be secured directly to and no higher than the rail cap, deck or cabin top (includes doghouse top).

210.3 No more than one mizzen staysail shall be set at the same time.

210.4 No mizzen staysail shall be carried on a yawl or ketch whose mizzen is set on a permanent backstay in lieu of a mizzen mast.

211 Penalties

If any of the rules of ORC Part 2 are broken by the crew through no fault of their actions, the penalty imposed may be different from disqualification, including no penalty.

3. CERTIFICATES

301 Certificates

301.1 An **ORC International certificate** may be issued for a boat completely measured in accordance with the IMS and complying with the requirements of the IMS Rules and Regulations as well as ORC Rating Systems, except that **MWT** and **MCG** are not mandatory measurements.

301.2 An **ORC Club certificate** may be issued with less than complete IMS measurements, in cases where measurement data may be:

- Measured in accordance with the IMS
- Declared by the owner. Any declared data may be taken or corrected by the Rating Authority if there is reasonable doubt about any declared data.
- Obtained from any other source, including photos, drawings, designs, data from identical or similar boats.

301.3 An **ORC Double Handed certificate** may be issued from the data needed for ORC International or ORC Club certificate and shall apply for crews made of two persons as follows:

- an ORC Double Handed certificate may co-exist at the same time with a fully crewed ORC International or ORC Club certificate
- an ORC Double Handed certificate shall have clear notification if it is generated from ORC International or ORC Club measurements
- Crew weight for an ORC Double Handed certificate may be declared as prescribed in 102.1 but may only be in the range of 120 – 300 kg. If not declared, it shall be taken as 170 kg. Minimum crew weight as defined in 102.3 shall not apply for an ORC Double Handed certificate.

301.4 An **ORC Non-Spin/HSF certificate** may be issued from the data needed for an ORC International or ORC Club certificate and shall apply for boats not using any spinnaker nor headsail set flying:

- an ORC Non-Spin/HSF certificate may co-exist at the same time with an ORC International or ORC Club certificate that includes a spinnaker or headsail set flying.
- an ORC Non-Spin/HSF certificate shall have clear notification if it is generated from ORC International or ORC Club measurements

301.5 A boat may enter the event with only one of three types of certificates: ORC International or ORC Club, ORC Double-Handed (International or Club) or ORC Non-Spin/HSF (International or Club).

301.6. A boat shall be scored according to her own valid certificate as selected in 301.5.

302 One Design Certificates

302.1 ORC International and ORC Club certificates may be in the form of a One Design certificate where all data affecting a boat's rating are standardized based on the set of measurements for classes having One Design class rules or having all the IMS measurements in close tolerances. In such case no measurement is needed providing that there is proof that the boat is complying with the One Design Class measurements.

302.2 Any change of the One Design class measurements shall render invalid the boat's One Design certificate and a new standard ORC International or ORC Club certificate may be issued.

302.3 Data for the ORC International or ORC Club One Design Classes based on their class rules and actual IMS measurements of at least 5 measured boats shall be collected by the ORC to issue One Design certificates, whose data will be made available to the rating authorities when ORC is satisfied that the production of the class is within close tolerances. National rating authorities may issue One Design certificates for the national One Design Classes in their area when they are satisfied with the measurement data.

- 302.4 One Design measurement data may be changed from time to time due to changes in the Class Rules, IMS Rule or ORC Rating systems.
- 302.5 One Design certificates shall have the notation “One Design”.

303 Certificate Issuing

- 303.1 Certificates shall be issued by the ORC Central Rating Office or by the National Rating Offices appointed by the ORC Nominating Bodies as approved by the ORC.
- 303.2 National Rating Offices shall be the Rating Authority in their areas and shall issue certificates for the boats normally stationed or racing in their jurisdiction. Measurement data of any boat shall be available and shared with any Rating Office, particularly when boats change area, owner, sail number, and are requesting certificates from several Rating Offices’ jurisdictions. Offset file data will not be available to other parties without the written permission of the Designer.
- 303.3 The Rating Office shall have the authority to issue the certificate upon receipt of the measurement data, but if anything that can be considered unusual or against the general interest of the IMS Rule and Regulations or ORC Rating systems is found, the Rating Office may withhold the certificate pending an examination of the case and issue a certificate only after approval is obtained from the ORC. The rating office may, at its discretion, require a re-measurement of the boat before issuing a new certificate whenever there is reasonable doubt in any measurement data.
- 303.4 The certificate shall be valid until the date printed on the certificate, which shall normally be the 31st of December of the current year. All boats of the same event shall use certificates with the same VPP year version.
- 303.5 A boat shall have only one valid certificate at any one time. The valid certificate shall be only the one issued last.
- 303.6 When the Rating Authority has reasonable evidence that not by her own fault a boat does not comply with her certificate, or that she should never have received a certificate, it shall withdraw the certificate, inform the owner or his representative in writing of the reasons for this withdrawal, re-check the data and
 - a) Re-issue a certificate if non-compliance may be corrected; or
 - b) If non-compliance may not be corrected by the Rating Authority, the certificate shall be invalidated and the owner or his representative shall be informed in writing.
- 303.7 Once issued, valid ORC Certificates are uploaded to the ORC Database and freely available at the ORC website in digital format.

304 Owner’s Responsibility

- 304.1 The owner or his representative shall be responsible for:
 - a) Preparing the boat for the measurement in accordance with the IMS
 - b) Declaring any required data to the measurer
 - c) Ensuring compliance of any measurement data to those printed on the certificate. Compliance with the certificate shall be defined as follows:
 - i) All measured, declared or recorded values shall be as close as possible to those on the certificate. Differences are allowed only if the values on the certificate give a worse rating (i.e., lower APH)
 - ii) The sail area shall be smaller or equal to the respective one printed on the certificate. The sails inventory shall include the largest of each when on board: mainsail, mizzen, quadrilateral sail or sail set on the wishbone boom headsail set on the forestay, symmetric spinnaker, asymmetric spinnaker, mizzen staysail and all headsails set flying and all asymmetric spinnakers having **SHW/SFL < 0.85**.

iii) The owner's declaration of crew weight and asymmetric spinnaker tacked only on the centerline shall not be considered as an issue of compliance with the certificate, but they are applied while racing in accordance with the rules 200 and 209.3.

d) Using the boat and equipment as prescribed by the RRS, IMS Rule and ORC Rating Systems.

304.2 A certificate shall be automatically invalidated by a change of ownership. The new owner may request a new certificate with a simple declaration that no changes have been made so a new certificate may be issued without the need of any new measurement. Conversely the new owner has every right to have his boat re-measured. However, if the flotation date is older than 10 years at the time of the ownership change, new flotation and stability measurements shall be performed.

304.3 Any change of the measurement data requires new measurement and issuing a new certificate. Such a change may be:

- a) Changes of ballast in amount or location or configuration.
- b) Change of tankage, fixed or portable, in size or location.
- c) Any changes in the engine and/or propeller installation.
- d) Addition, removal or change of location of gear or equipment, or structural alteration to the hull that affect the trim or flotation of the yacht.
- e) Movement of any measurement bands used in sail area measurement, or any changes in spars, spar location or headstay position.
- f) Any change to the size, cut or shape of the maximum area sails.
- g) Changes to the shape of the yacht's hull and/or appendages
- h) Changes to spars or standing rigging configuration, including elements of rigging identified as adjustable while *racing*.
- i) Changes to the other hull measurements in accordance with the ORC Rule 304.
- j) Any other change of the data in the certificate that affect any rating.

305 Measurement Protests

305.1 When, as a result of any pre-race inspection or measurement, it is determined that a boat does not comply with her certificate:

- a) When the non-compliance is considered to be minor and can be easily corrected, the boat may be brought into compliance with her certificate, and, when necessary, a new certificate may be issued. The Measurer shall inform the Technical Committee of such a correction, who shall approve a new certificate issue.
- b) When the non-compliance is major (even if it can be corrected) or if it cannot be corrected without requiring significant re-measurement, a boat shall not be eligible to enter a regatta. The Measurer shall inform the Technical Committee who shall act in accordance with the RRS and inform the Rating Authority.

305.2 When, as a result of any measurement protest by a boat or by the Technical Committee, it is determined that a boat does not comply with her certificate in accordance with 304.1(c)(i) and (ii), the non-compliance shall be calculated as a difference in percentage of APH:

- a) If the difference is less than or equal to 0.1%, the original certificate will be maintained, the protest will be dismissed, and the protestor will have to cover any cost involved. RRS 60.5(d)(1) will apply but no corrections are needed.
- b) If the difference is more than 0.1% but less than or equal to 0.25%, no penalty shall apply, but a new certificate shall be issued based on the new measurement data and all races of the series shall be rescored using the new certificate data. The Protest will be considered accepted and the protestee will have to cover any cost involved.

- c) If the difference is more than 0.25% but less than 0.40%, a boat shall receive a scoring penalty that shall be 50% of the score for Did not Finish, rounded to the nearest whole number (0.5 rounded upward) in any race in which her rating was incorrect. New certificate shall be issued based on the new measurement data and all races of the series shall be re-scored using the new certificate data. The Protest will be considered accepted and the protestee will have to cover any cost involved.
- d) If the difference is 0.40% or more, a boat shall be disqualified (DSQ) in any race in which her rating was incorrect. The Protest will be considered accepted and the protestee will have to cover any cost involved and the yacht shall not race again until all non-compliance issues are corrected to the limit defined in a) above.

305.3 If a boat's certificate has to be recalculated during a race or series as a result of an error or an omission in the production of the certificate of which the boat owner could not have been reasonably aware, according to 303.6(a), all races of the series shall be rescored using the new data.

305.4 The results of a race or series shall not be affected by measurement protests lodged after the prize giving or such other time as the Sailing Instructions may prescribe. Nothing in this paragraph shall bar action under the RRS concerning a boat deliberately altered and shall not limit in any way acts of the Race and Protest Committees against any individual person involved.

4. SCORING

401 General

401.1 ORC Rating systems provide a variety of methods for calculating corrected times using the ratings calculated by the ORC VPP and displayed on the ORC International and ORC Club certificates. Selection of the scoring methods depends on the size, type and level of the fleet, type of the race, and local racing conditions and its use is at the discretion of National Authorities or local event organizers, except for the events governed by the ORC Championship Rules. Scoring method, type of course and custom course model, when used, shall be defined in the Notice of Race and/or Sailing Instructions.

401.2 Corrected time shall be displayed in hours:minutes:seconds. When calculating corrected time, the boat's elapsed time shall be translated to seconds, calculations shall be made and results shall be then rounded to the nearest second (for example: 12345.5 = 12346 seconds). This time in seconds shall be then put back in hours:minutes:seconds format.

401.3 When the length of the course is needed for calculation of corrected time, it shall be recorded to a precision of 0.01 NM.

401.4 All-Purpose Handicap (APH) is an average representation of all time allowances in wind speeds from 6 – 20 knots and wind directions. It is also used as single number Time on Distance Rating as defined in 403.2. It may be used for simple comparisons between boats and possible class divisions.

401.5 Class Division Length (CDL) is the average of the effective sailing length (IMS L) and the rated length (RL) that is calculated from the upwind speed of the boat in a True Wind Speed of 12 knots. It is used for class divisions as a combination of the boat's upwind speed and length.

402 Polar Curve Scoring

402.1 Polar Curve Scoring is the most powerful engine of the ORC rating systems. Its unique feature, making it fundamentally different and much more precise from any other handicap system, is its capacity to give and rate different handicaps for different race conditions because yachts do not have the same performance in different wind strengths and directions.

402.2 ORC certificate provide a range of ratings (time allowances expressed in s/NM) for different wind conditions in the range of 4 – 24 knots of true wind speed from optimum beat, over 52, 60, 75, 90, 110, 120, 135, 150 degrees of true wind angle to the optimum run.

Time Allowances in secs/NM									
Wind Velocity	4 kt	6 kt	8 kt	10 kt	12 kt	14 kt	16 kt	20 kt	24 kt
Beat VMG	943.4	690.9	579.6	537.0	513.6	498.9	488.5	476.4	477.2
52°	590.6	451.0	395.5	375.0	360.8	349.9	341.5	329.1	324.9
60°	533.4	420.8	380.7	358.7	343.5	332.1	323.2	310.1	303.3
75°	493.1	394.7	361.9	338.6	320.9	307.5	296.7	280.4	269.6
90°	496.8	390.3	350.3	325.5	308.6	290.6	276.4	254.9	240.9
110°	527.7	411.8	364.3	325.9	295.2	273.2	257.4	232.9	212.4
120°	586.1	441.8	377.4	335.2	300.4	273.7	250.3	220.9	200.8
135°	740.0	513.0	406.6	357.5	316.3	280.2	251.5	214.1	184.9
150°	895.3	614.7	478.9	409.0	365.3	325.7	288.7	230.8	185.1
Run VMG	1033.8	709.8	553.0	472.3	421.8	376.1	333.4	266.6	213.7
Selected Courses									
Windward / Leeward	987.2	700.3	566.3	504.7	467.7	437.5	410.9	371.5	345.4
All purpose	716.0	526.8	441.3	398.9	370.5	347.4	328.1	300.0	281.4

Figure 1 - Time allowances as printed on the ORC Certificate

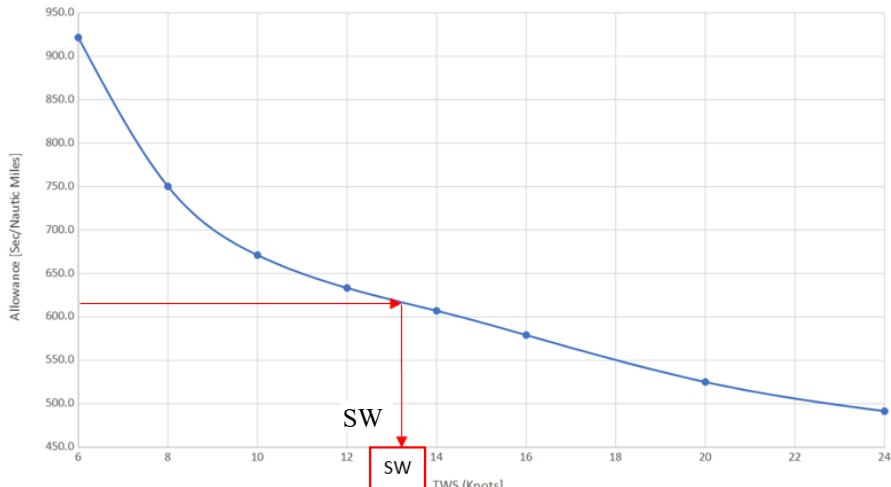
402.3 When calculating corrected time by the Polar Curve Scoring, a course to be sailed shall be taken as one of the pre-selected courses for which time allowances are given on the certificate or constructed from the data measured at the racing area.

402.4 Pre-selected courses are:

- Windward/Leeward** (up and down) is a conventional course where the race course consists of 50% upwind and 50% downwind legs.
- All-purpose** course type includes equal distribution of all wind directions.

402.5 When the course is constructed the following data shall be taken for each leg: wind direction, length and direction of each leg, and optionally, the direction and rate of the current on each leg. Any leg can be split in sub-legs in case there is a marked shift in wind and/or current direction.

402.6 Percentage of each wind direction, corrected for the tide is calculated from the constructed course data.


402.7 For each course, a boat's performance curve is calculated using the course definition and time allowances given in the certificate.

402.8 The vertical axis represents the speed achieved in the race, expressed in seconds per mile. The horizontal axis represents the wind speed in knots (*Figure 2*). Elapsed time shall be divided by the distance of the course to determine the average speed in seconds per mile.

For that average speed a point on the performance curve shall be determined by interpolation and a respective average wind for that point shall be determined as "Scoring Wind". If the "Scoring Wind" point would fall outside of 4-24 knots of wind a respective 4 or 24 knots value shall be used.

"Scoring Wind" is representing the boat's performance on that course. The faster the boat has sailed, the higher the "Scoring Wind", which is the primary index for scoring.

402.9 The highest "Scoring Wind" of the best boat in the race is then used as the wind speed for corrected times calculations. For that wind on the horizontal axis, the appropriate time allowances are determined on each boat's curve on the vertical axis. Such a time allowance is then used as a single number Time-on-Distance coefficient as defined in 403.2.

Figure 2: Performance Curve

402.10 An alternative to the method described in 402.9 is that results can be determined by the order from the highest to the lowest "Scoring wind". In such a case corrected times are calculated from the performance curve of each boat by converting her "Scoring wind" to a time allowance that is multiplied by the length of the course. Use of this method shall be specified in the Notice of Race and Sailing Instructions.

402.11 Race results can be re-scored after the race only if the winning boat is found not complying with her certificate according to Rules 303.6, 305.2(b) or (c). In that case, the "Scoring wind" of the best boat after re-calculation shall be used as the wind speed for corrected times calculations.

402.12 "Scoring Wind" for the winning boat normally approximates the predominant wind strength for the race. However, in cases where the "Scoring Wind" does not represent fairly the real wind strength during a race, the wind strength may be determined by the Race Committee.

402.13 All the formulas for course and performance curve construction and interpolations together with relevant code for the scoring software are available from ORC and scoring software may be downloaded at the ORC website (www.orc.org).

403 Single Number Scoring Options

403.1 ORC certificates are also offering single number scoring options as Time on Time and Time on Distance ratings calculated for Windward/Leeward and All-purpose courses.

Single Number Scoring Options		
Course	Time On Distance	Time On Time
Windward / Leeward	480.0	1.2499
All purpose	378.7	1.5843

Figure 3 – Single number scoring options as printed on the ORC Certificate

403.2 Time-On-Distance

With Time-on-Distance (ToD) scoring, the coefficient of time allowance of one boat will not change with wind velocity but will change with length of the course. One boat will always be giving to another the same handicap in s/NM, and it is easy to calculate the difference in elapsed time between two boats needed to determine a winner in corrected time.

Corrected time is calculated as follows:

$$\text{Corrected time} = \text{Elapsed time} - (\text{ToD}_{\text{Delta}} * \text{Distance})$$

Where $\text{ToD}_{\text{Delta}} = \text{ToD}_{\text{the boat}} - \text{ToD}_{\text{the lowest (fastest boat) in the fleet}}$

where the corrected time of the boat having the fastest ToD in the fleet will be equal to her elapsed time.

ToD coefficients are calculated for the respective course model (Windward/Leeward or All-purpose) with the following wind strength distribution:

TWS (kt)	6	8	10	12	14	16	20
Time Allowance percentage	5%	10%	20%	30%	20%	10%	5%

A custom-made ToD coefficient may be calculated using a different course model and different wind distribution matrix based on wind historical data or weather forecast for a particular race. The course model to be used shall be specified in the Notice of Race and/or Sailing Instructions.

403.3 Time-On-Time

With Time-On-Time (ToT) scoring, time allowances will increase progressively through the duration of the race. Course distance has no effect on the results and need not be measured. Corrected time will depend only on the elapsed time, and the difference between boats may be seen in seconds depending of the duration of the races. The longer the race, the larger the handicap.

Corrected time is calculated as follows:

$$\text{Corrected time} = \text{ToT} * \text{Elapsed time}$$

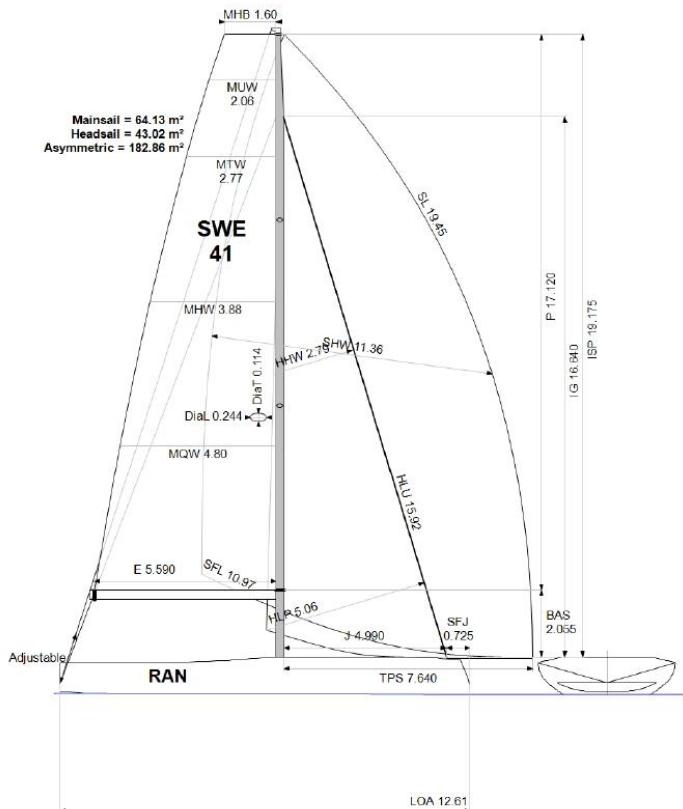
ToT coefficients are calculated for the respective course model (Windward/Leeward or All-purpose) as follows:

$$\text{ToT} = \frac{600}{\text{ToD}}$$

A custom-made ToT coefficient may be calculated using a conversion factor to the custom-made ToD coefficient calculated as in 403.2. A conversion factor different from 600 may be set as ToD representing the middle of the fleet. Use of a different correction factor will not change the place in corrected times, it will only affect the differences in corrected time.

403.4 **National Rating Office scoring options**

National Rating Offices may publish on their certificates other scoring options. This may include ToD and/or ToT coefficients using different course models as well as multiple ToD and/or ToT coefficients for different wind ranges. The course type used to calculate these ratings and the methods of how they will be applied shall be specified in the Notice of Race and/or Sailing Instructions of the races and events that use them.


ORC INTERNATIONAL CERTIFICATE SAMPLE

International Certificate **2026**

RAN
SWE41

Space for
Rating Office
address and logo

Rated boat velocities in knots									
Wind Velocity	4 kt	6 kt	8 kt	10 kt	12 kt	14 kt	16 kt	20 kt	24 kt
Beat Angles	45.3°	42.9°	40.0°	38.0°	36.8°	36.2°	35.9°	36.0°	37.1°
Beat VMG	3.25	4.64	5.61	6.12	6.38	6.54	6.66	6.80	6.82
52°	5.08	7.06	8.18	8.72	9.09	9.36	9.58	9.90	10.08
60°	5.48	7.44	8.45	9.11	9.56	9.88	10.14	10.55	10.82
75°	5.81	7.72	8.66	9.52	10.23	10.71	11.10	11.76	12.24
90°	5.68	7.72	8.79	9.63	10.44	11.32	11.99	13.01	13.80
110°	5.44	7.53	8.72	9.79	10.93	11.90	12.66	14.05	15.92
120°	5.09	7.27	8.65	9.85	11.02	11.98	13.18	15.08	16.74
135°	4.54	6.59	8.15	9.22	10.47	11.93	13.42	15.86	18.84
150°	3.77	5.51	6.98	8.09	9.04	10.16	11.50	14.80	18.76
Run VMG	3.26	4.77	6.04	7.01	7.83	8.79	9.96	12.82	16.25
Gybe Angles	139.5°	141.0°	144.2°	149.3°	149.8°	144.1°	143.8°	143.5°	148.4°

APH ToD: **416.8** CDL: **13.150**

APH ToT: **1.4397** CertNo:

BOAT

Class	Carkeek 40+
Designer	Carkeek Design Partners
Builder	Carrington Boats Ltd
Age date	04.2018
Series date	04.2018
Offset file	carkeek-40+.off
Data file	SWE41

HULL

Length Overall	12.606
Maximum Beam	4.212
Draft	3.012
Displacement	4.015
DLR	2.5075
IMS Division	Performance
Dynamic Allowance	0.000%
Age Allowance	0.260%
RS Assessment	-0.254%

PROPELLER

Installation Strut
Type Folding 2 blades
Diameter 0.400m

CREW

Maximum weight 899 (declared)
Minimum weight 764 * when applied
Crew Arm Extension

SAIL AREAS (m²)

	Measured	Rated
Mainsail	64.13	65.63
Headsail Luffed	43.02	43.02
Headsail Flying		
Symmetric		
Asymmetric	182.86	182.86
(1 asymmetric(s) with SHW/SF1 < 85%)		

STORM SAIL AREAS Maximum (m²)

STORM SAIL AREAS MAX	
Trysail	16.75
Storm Jib	14.01
Heavy Weather Jib	37.81

SAIL LIMITS

Headsails 7
Spinnakers 5

STABILITY

Righting Moment 215.6
Stability Index 136.3

International
Certificate
2025

Boat
FOX 2.0
USA 55052

Space for
Rating Office
address and logo

Time Allowances in secs/NM									
Wind Velocity	4 kt	6 kt	8 kt	10 kt	12 kt	14 kt	16 kt	20 kt	24 kt
Beat VMG	943.4	690.9	579.6	537.0	513.6	498.9	488.5	476.4	477.2
52°	590.6	451.0	395.5	375.0	360.8	349.9	341.5	329.1	324.9
60°	533.4	420.8	380.7	358.7	343.5	332.1	323.2	310.1	303.3
75°	493.1	394.7	361.9	338.6	320.9	307.5	296.7	280.4	269.6
90°	496.8	390.3	350.3	325.5	308.6	290.6	276.4	254.9	240.9
110°	527.7	411.8	364.3	325.9	295.2	273.2	257.4	232.9	212.4
120°	586.1	441.8	377.4	335.2	300.4	273.7	250.3	220.9	200.8
135°	740.0	513.0	406.6	357.5	316.3	280.2	251.5	214.1	184.9
150°	895.3	614.7	478.9	409.0	365.3	325.7	288.7	230.8	185.1
Run VMG	1033.8	709.8	553.0	472.3	421.8	376.1	333.4	266.6	213.7

Selected Courses

Windward / Leeward	987.2	700.3	566.3	504.7	467.7	437.5	410.9	371.5	345.4
All purpose	716.0	526.8	441.3	398.9	370.5	347.4	328.1	300.0	281.4

Space for
National Rating Office
Scoring options

ORC Ref

Issued on **06.01.2025**

Valid until

VPP ver: 2025 0.94beta | © ORC | www.orc.org

International Certificate
2026

RAN
SWE41

Space for
Rating Office
address and logo

Data in meters/kilograms (Metric)

HULL AND APPENDAGES (Lightship Trim)

Class	Carkeek 40+	Length overall	12.606	VCGD	-1.137	Centerboard weight	N/A
Measurement	15.01.2025	Maximum beam	4.212	VCGM	-1.150	List angle	N/A
HIN		Draft	3.012	RM Rated (kg·m)	215.6	Canting keel angle	N/A
Plan review		Displacement	4,015	Limit of positive stability(°)	140.2		
Hull construction	Carbon	Wetted area	28.14	Stability Index	136.3		
Carbon rudder	Yes	IMS L	12.300	BLR index	N/A		
Light stanchions	Yes	LSM0	11.698				
Trim tab	No	Accomod. length	12.606	Default crew weight	861		
		Sink (kg/mm)	22.40	Declared crew weight	899		

PROPELLER

Propeller Type	Folding 2 blades				
Installation	Strut	PRD	0.400	EDL	1.020
Twin screw	No	PBW		ST1	0.040
Hydro generator	No	PIPA	0.0035	ST2	0.189

RIG

Backstay	Adjustable	P	17.120	E	5.590	PY	N/A	Flying Headsail
Forestay	Fixed	IG	16.640	J	4.990	MDT1Y	N/A	Foretriangles
Inner forestay	Not installed	ISP	19.175	BAS	2.055	MDL1Y	N/A	Id ISP TPS
Mast material	Carbon	MDT1	0.114	FSD	0.038	MDT2Y	N/A	
Single headsail furler	No	MDL1	0.244	SFJ	0.725	MDL2Y	N/A	
Mainsail furler	No	MDT2	0.080	SPL		TLY	N/A	
Articulated bowsprit	No	MDL2	0.125	WPL		BASY	N/A	
Non-circular rigging	No	TL	2.942	TPS	7.640	EY	N/A	
Fiber rigging	Yes	MW	0.219	BD	0.292	BDY	N/A	
Base of mast	Fixed	GO	0.247	MWT	141.40	IY	N/A	
Running backstays	Yes			MCG	5.840	EB	N/A	
Checkstays	No							
Spreaders	2							
Rotating mast	No							

FLOTATION AND STABILITY

Calculation method	Boom inclining	SFFP	1.004	SAFP	12.606	W1	130.4	PD1	267.6	WD	5.500
Flotation Date	09.07.2025	FFM	0.402	FAM	0.334	W2	130.4	PD2	260.3	PLM	9000.00
Measurer	EST7	FF	0.409	FA	0.337	W3	130.4	PD3	257.2	GSA	1.0
		LCFcl	6.881	LCFsh	7.122	W4	130.4	PD4	266.8	RSA	1.0
		SG	1.0000	HBI	1.164	LCFD				RM	214.8

INVENTORY

TANKS	Id	Description	Sp.Wght	Capacity	Condition	LCG	VCG
						Fuel	20

OTHER ITEMS	Id	Kind	Description	Weight	LCG	VCG	
					Total deductible	8	6.40
	4	Miscellaneous	eletronic box aft midship				
	1	Battery					
	2	Battery					
	3	Engine (IC)					

Total deductible

ORC Ref

Issued on 02.02.2026

Valid until

VPP ver: 2026 1.00 | © ORC | www.orc.org

International Certificate
2026

RAN
SWE41

Space for
Rating Office
address and logo

MAINSAIL

<i>Id</i>	<i>MHB</i>	<i>MUW</i>	<i>MTW</i>	<i>MHW</i>	<i>MQW</i>	<i>Area</i>	<i>Meas.Date</i>	<i>Comment</i>
OM-B	1.60	2.06	2.77	3.88	4.80	64.13		142475
MN-E	1.59	2.05	2.75	3.85	4.77	63.77	05.07.2025	153617

HEADSAIL

<i>Id</i>	<i>HHB</i>	<i>HUW</i>	<i>HTW</i>	<i>HHW</i>	<i>HQW</i>	<i>HLP</i>	<i>HLU</i>	<i>Btn</i>	<i>Flying FT</i>	<i>Area</i>	<i>Meas.Date</i>	<i>Comment</i>
SS	0.06	0.75	1.46	2.79	4.08	5.06	15.92	Yes	Inner	43.02	10.03.2025	Doyle 79176
J1-E	0.12	0.76	1.39	2.63	3.83	4.96	16.53	Yes	No	42.75	09.07.2025	153620
J2-E	0.12	0.75	1.36	2.55	3.77	4.95	16.56	Yes	No	42.18	09.07.2025	153722
J3-B	0.12	0.77	1.37	2.55	3.76	4.94	16.48	Yes	No	41.98	11.03.2025	
J-3.5-B	0.10	0.76	1.37	2.51	3.69	4.95	15.89	Yes	No	40.07	11.03.2025	142105
J4-A	0.11	0.70	1.28	2.39	3.61	4.93	14.41	Yes	No	35.33	11.03.2025	142103
GS-1	0.08	0.42	0.80	1.59	2.37	3.15	13.15	No	Inner	20.90	11.03.2025	Doyle 2018

ASYMMETRIC SPINNAKER

<i>Id</i>	<i>SLU</i>	<i>SLE</i>	<i>SL</i>	<i>SHW</i>	<i>SFL</i>	<i>Ratio</i>	<i>Area</i>	<i>Meas.Date</i>	<i>Comment</i>
A4-B	21.10	17.80	19.45	11.36	10.97	104%	182.86	09.07.2025	
A2-E	21.25	17.90	19.58	11.13	10.81	103%	180.51	09.07.2025	
A1-C	21.08	18.46	19.77	10.76	11.67	92%	180.27	09.07.2025	
A1/3-A	21.08	18.67	19.88	10.39	11.83	88%	176.85	15.07.2025	
Code 0	18.96	16.80	17.88	6.84	9.10	75%	108.65	21.07.2025	

NON MANUAL POWER CONTROLS (NMP)

Sheets	No	Mainsail cunningham	No	Jib track	No	Spinnaker retriever	No
Boomvang	No	Headsail cunningham	No	Tack line	No		
Outhaul	No	Main traveller	No	Halyards	No		

Club Certificate
2026

**Garmin Team
Pro4u
SWE 88**

Space for
Rating Office
address and logo

Time Allowances in secs/NM									
Wind Velocity	4 kt	6 kt	8 kt	10 kt	12 kt	14 kt	16 kt	20 kt	24 kt
Beat VMG	1424.8	1012.2	837.7	749.8	712.8	697.8	689.4	683.9	695.8
52°	907.9	666.9	568.8	524.4	505.7	498.1	493.4	488.7	489.2
60°	845.0	634.7	549.2	511.8	493.9	485.5	480.7	475.0	474.9
75°	804.8	614.4	536.7	502.7	483.5	470.8	462.7	452.9	448.4
90°	826.8	625.4	536.1	498.0	481.1	464.7	450.9	432.6	421.8
110°	861.9	623.9	526.8	487.9	464.7	447.1	435.7	417.9	407.3
120°	893.8	643.3	538.4	493.3	466.8	444.3	424.7	399.1	381.8
135°	1024.8	716.6	582.1	515.9	482.4	457.3	433.8	390.5	346.6
150°	1232.4	842.9	664.2	564.4	510.4	480.5	456.9	412.9	370.5
Run VMG	1423.1	973.3	766.9	648.8	574.8	526.2	494.0	449.3	409.6
Selected Courses									
Windward / Leeward	1423.9	992.8	802.3	699.3	643.8	612.0	591.7	566.6	552.7
All purpose	1074.6	767.3	634.6	568.6	534.6	514.2	499.8	479.2	465.9

Single Number Scoring Options		
Course	Time On Distance	Time On Time
Windward / Leeward	672.8	0.8918
All purpose	552.7	1.0856

Space for
National Rating Office
Scoring options

ORC Ref

Issued on 02.02.2026

Valid until

VPP ver: 2026 1.00 | © ORC | www.orc.org

INDEX OF SYMBOLS

AA	Age Allowance	103.1
APH	All-Purpose Handicap	401.4
B	Effective Beam	100.7
BLRI	Ballast Leeward Recovery Index	106.4
BTR	Beam Depth Ratio	100.9
CDL	Class Division Length	401.5
CEXT	Crew Arm Extension	107.5
CI	Capsize Increment	106.2
CW	Crew Weight	102
DA	Dynamic Allowance	103.2
DSPM	Displacement in Measurement Trim	100.5
DSPS	Displacement in Sailing Trim	100.5
FA	Freeboard Aft (for default SG)	100.2
FF	Freeboard Forward (for default SG)	100.2
GPH	General Purpose Handicap	401.4
MHBI	Height of Base of I	100.4
IM	Foretriangle Height	108.5
IMS L	Sailing Length	100.6
LPS	Limit of Positive Stability	106.1
LSM0-4	Second Moment Lengths	100.6
PIPA	Propeller Installation Projected Area	105.1
RA90	Righting Arm, 90 degrees	106.4
RM	Righting Moment	107
RMC	Righting Moment Corrected	107.3
SI	Size Increment	106.2
T	Effective Hull Depth	100.8
VCGD	Vertical Center of Gravity from the offset datum line	100.10
VCGM	Vertical Center of Gravity from the measurement trim waterline	100.11